Subsquare-free Latin squares of odd order

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subsquare-free Latin squares of odd order

For every odd positive integer m we prove the existence of a Latin square of order 3m having no proper Latin subsquares. Combining this with previously known results it follows that subsquare-free Latin squares exist for all odd orders. © 2005 Elsevier Ltd. All rights reserved.

متن کامل

The construction of subsquare free Latin squares by simulated annealing

A simulated annealing algorithm is used in the construction of subsquare free Latin squares. The algorithm is described and experience from its application is reported. Results obtained include the construction of subsquare free Latin squares of orders 16 and 18, the smallest orders for which existence of such squares was previously in doubt.

متن کامل

On Even and Odd Latin Squares

Latin squares can be classified as odd or even according to the signs of the permutations given by their rows and columns. In this paper, the behaviour of the parities of a latin square under the action of the isotopy group (permuting rows, columns, and symbols) and the transformation group (interchanging rows, columns, and symbols) is analyzed. A rule is given that shows that the behaviour of ...

متن کامل

Latin Squares with No Small Odd Plexes

A k-plex in a Latin square of order n is a selection of kn entries in which each row, column, and symbol is represented precisely k times.A transversal of aLatin square corresponds to the case k = 1. We show that for all even n > 2 there exists a Latin square of order n which has no k-plex for any odd k < n4 but does have a k-plex for every other k ≤ 1 2n. © 2008 Wiley Periodicals, Inc. J Combi...

متن کامل

Latin Squares of Order 10

We describe two independent computations of the number of Latin squares of order 10. We also give counts of Latin rectangles with up to 10 columns, and estimates of the number of Latin squares of orders up to 15. Mathematics Reviews Subject Classifications: 05B15, 05-04

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2007

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2005.07.002